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The general theory of inhomogeneous mean-field systems of Raggio and Werner 
provides a variational expression Ibr the (almost sure) limiting free energy 
density of the Hopfield model 

H I~l S) I x l, 
,,,,, = - ~  Z Z r162 

L j = I  l t = l  

for Ising spins Si and p random patterns ~ ' =  (4~(, c~-, ..... g"~':v) under the assump- 
tion that 

N 

lim N - '  ~ 5~,=),, ~,=1~,4~...,4;'1 
N - .  i - I  

exists (ahnost surely) in the space of probability measures over p copies of 
{ - I ,  1}. Including an "external field" term - Z ~ _ l  h~' S'~Yl ~,'S,, we give a 
number of general properties of the fiee-energy density and compute it tbr (a) 
p = 2  in general and (b) p arbitrary when 2 is unilbrm and at most the two 
components h m and h m are nonzero, obtaining the (almost sure) formula 

.I'(/L _ i .~,,. ' "~" h"' h)-_~]  ( [J ,h" '+h"a)+Ll  (Irl, - h  m) 

for the free energy, where j.r denotes the limiting free energy density of the 
Curie-Weiss model with unit interaction constant. In both cases, we obtain 
explicit Ibrmulas for the limiting (almost sure) values of the so-called overlap 
parameters 

N 

,.',~,(/1, h)= N -~ y~ ~',.'<s,> 
*=1 

in terms of the Curie-Weiss magnetizations. For the general i.i.d, case with 
P r o b { ~ ' =  _+1} =(l /2)_+e,  we obtain the lower bound 1 +4e,2(p - 1) for the 
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temperature T,. separating the trivial free regime where the overlap vector is 
zero from the nontrivial regime where it is nonzero. This lower bound is exact 
for p=2, or e=0, or e= _+1/2. For p=2 we identify an intermediate tem- 
perature region between T, = 1 -4C- and 7,. = 1 +4e-" where the overlap vector 
is homogeneous (i.e., all its components are equal) and nonzero. T. marks the 
transition to the nonhomogeneous regime where the components of the overlap 
vector are distinct. We conjecture that the homogeneous nonzero regime exists 
for p>~3 and that T.=max{I -4e2(p - l),0}. 

KEY WORDS: Hopfield model; equilibrium statistical mechanics; random 
mean-field models. 

1. I N T R O D U C T I O N  

The Hopfield model for N classical Ising spins {Si: i= 1, 2 ..... N}, is 
specified by the choice of p configurations { ~ ' = ( ~ ' , ~  ..... ~ ) :  p = l ,  
2,..., p}, which determine the interaction constants 

1 P 
u p J ! ~ . } = - - -  ~ r162 i , j=l,2,. . . ,N 

"J 2N p =  I 

entering the Hamiltonian 

N 

i , j = l  

(1.1) 

The statistical mechanics of this random mean-field model was studied in 
the late seventies by Pastur and Figotin, I~) although it gained notoriety and 
its name after Hopfield t2) proposed it as a model for an associative 
memory. 13) In this context the p configurations S = ~ '  are called patterns 
and they become fixed points of the "linear threshold dynamics" 

Sj(t+ 1 ) = s i g n ( - 2  ~ J~.~}Sj(t)) 
j = l  

as N ~ o o .  
The equilibrium thermodynamics of the model assuming the { ~J;} are 

independent identically distributed random variables with P r o b { ~ - -  _1 } 
= 1/2, and p independent of N, was analyzed by many authors after the 
work of Pastur and Figotin (e.g., refs. 4-7). 

The analysis of the case o f p  growing with N but p /N~  ~ as N ~  m 
followed. One distinguishes the subextensive regime a - - 0  (or regime of 
perfect memory),  where satisfactory and complete results are available, (8q3) 
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from the extensive regime a > 0, where only partial results are known. ~ ,4-16) 
The present state of affairs, excluding the general "self-averaging" property 
of the model obtained in ref. 16, is clearly exposed in ref. 17. 

Let 

f ~ ( f l )  = (fiN) - '  In Z I~(fl) 

be minus the free-energy density associated with the partition function 

Zl'~l(fl~-,v,p,,-,- ~', e x p { - f l H ~ ( S ) }  
s e l _ + l l  'v 

The strongest result on the thermodynamic limit under the i.i.d, assumption 
with symmetric distribution in the subextensive case (which includes the 
case of finite p ) i s  in ref. 12: (1) f ~ , ( f l )  converges almost surely (i.e., with 
probability one) as N ~  oo to the limiting negative free-energy density of 
the Curie-Weiss model with interaction constant 1 at the same reciprocal 
temperature. (2) Let a+-(fl) denote the largest (+ ) ,  resp. smallest ( - ) ,  
solution of the equation a=tanh(fla). Upon adding - h  Y',N=~ r162 to the 
Hamiltonian, the measures induced on the so-called overlap parameters 

N 

rn'/v(fl; { ~ } ) = U - '  ~, r  
i = 1  

(here ( .  > denotes the thermal expectation) converge as I1--* 4-0 weakly 
and almost surely to the point measure sitting at a+-(fl) times the vth unit 
vector in [~P. 

The purpose of this paper is, first, to point out an alternative treat- 
ment of the case of finitely many patterns using the methods of refs. 18 and 
19. These papers provide a general and efficient treatment of the equi- 
librium thermodynamics of arbitrary mean-field systems. The last section of 
the second paper I J9) gives a general result which can be applied directly to 
a general class of random mean-field models which includes the finite-p 
Hopfield model. Moreover, these results are obtained under an ergodic 
hypothesis on the random process {~} which is weaker than the i.i.d. 
assumption: ergodicity for N ~  oo of the empirical distribution of the vec- 
tors ~i = (r162 ..... C/P) (i = 1, 2,..., N). Second, we establish here a number of 
properties of the limiting free-energy density, compute it in some particular 
cases, and give a lower bound for the critical temperature marking the 
transition from zero to nonzero overlap in the general i.i.d, case (Section 5). 

We recall the following familiar facts about the equilibrium thermo- 
dynamics of the Curie-Weiss model, which will often be used without men- 
tioning them. We write fcw(fl, h; J) for the limiting negative free-energy 
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density of the Curie-Weiss model with interaction constant J~>0 at the 
reciprocal temperature fl and external field h: 

j N N 

2N Z S, Si--h Z S, (1.2) 
t,,[=[ i=1  

and rnC'V(fl, h; J) for the corresponding limiting mean magnetization. We 
have 

fr  h; J)  = m a x  g(fl, h, t; J) 
t ~ [ - - I , I ]  

where 

g(fl, h, t; J) =J t2 + ht + fl- ~rl ( ~  --~) (1.3) 

and q(t) = - t  In(t) - (1 - t) ln(1 - t) for t~ [0, 1 ] with the usual under- 
standing that 0 ln (0)=  0. 

For  flJ<~ 1 or h # 0 ,  there is a unique maximizer t=mCW(fl, h; J) 
for g. For f l J>  1 and h = 0  there are two maximizers mCW(fl, 0 + ; J )  
with -m~W(fl, O-;J)=m~W(fl, O+;J)>O. For all flJ<~l, one has 
mC"(fl, 0; J) =0.  One has lim/~ 1 t/jm~W(fl, 0-+; J) = m~"(1/J, 0; J)=0. NOW, 
f l ~ f ~ " ( f l ,  h; J) is a strictly convex, strictly decreasing, and differentiable 
function with 

,Of Cw (1 +mCW(fl, h; J).) 
-fl- - -~  (fl, h; J) = ~ 2 

h~---~fcw(fl, h; J) is strictly convex, even, and differentiable except for h = 0  
when flJ> 1. For flJ> 1, the left and right derivatives (OfcW/Oh)+ (fl, 0; J) 
are given by mC'V(fl, 0-+; J). 

2. B A S I C  R E S U L T S  

We consider more general models where the configuration space 5 ~ of 
the spin is a finite discrete set of reals. The positive integer p is fixed and 
supressed in the notation. Let a denote the "spin function" (identity func- 
tion) on ~ ,  i.e., a(s)=s (s~5r We let .~ be the p-fold direct product of 
5g provided with the product topology. By collecting the ~ /wi th  fixed i to 
~; = (d), ~ ..... ~ ' )  E Y', for i = 1, 2 ..... N, we obtain a random process on the 
spin sites taking values in ~'. It is crucial for the application of the theory 
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of refs. 18 and 19 that the randomness can be localized in the spin sites, in 
the present case 

1 
J!~=,., ---2N (r  ~,~), i , j =  1, 2 ..... N 

Here and in the following ( . ,  �9 ) denotes the usual scalar product in R p. 
Given a vector h = (h', h 2 ..... h p) with real components h", we add the 

term 

p N N 

- Z h; Y - Y  <h, r S, 
I * = 1  i = l  i = 1  

to the Hamiltonian (1.1) and denote by ttglt,~ h) the corresponding J N " I  ~ '  

(negative) free-energy density. This incorporates p "external magnetic 
fields" of strength h ~' in the "direction of the pattern #," which permit the 
control of the overlap parameters: 

m!~vj~v I (fl, h)=m~,(fl, h; {r (2.1) 
Oh I, 

We write a.~ for the point measure sitting at x e.~'. The only 
hypothesis on a realization of the random process {~J/} used in ref. 19 is 

N 

weak- lim N - i  ~ ~ig, = 2 (2.2) 
N ~  , z  i =  I 

in the space of probability measures on .~. This ergodicity condition is 
satisfied almost surely if {~f} are i.i.d., or, more generally, if (~,i} is a 
stationary ~r-valued Markov process. 

Any probability measure ~b on ~ is specified by the numbers {~b({s} ): 
s e ~ } ;  we denote by 

S((b)= - E ~b({s})ln(~b({s})) 
s E .'.P 

its entropy relative to the uniform probability measure (i.e., normalized 
counting measure) on ~ ,  denoted by o~. 

We write A for the support in 2" of the probability measure 2. 
Consider the set F~ of functions x ~ ~b~ on A taking values in J / (SQ,  the 
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probability measures on 5 e. If r = { x ~ r x } is such a family, then we let 
mx(~) be the vector in R p with components 

mS'(q~)dZ -r ~ 2 ({x} )x" (a )o~ ,  / ~ = 1 , 2  ..... p (2.3) 
X E / I  

The following result, which is a special case of a general result 
obtained in ref. 19, is the basis of all our work. 

T h e o r e m .  ~tg~ If (2.2) holds (resp. holds almost surely, i.e., with 
probability 1), then 

lim f~N~l(fl, h ) = m a x  { �89  ~ A({x})S(r 
N ~  ~,  q) ~ / ~  x ~ A  

(2.4) 

(resp. almost surely). 

For a family �9 = { x ~ r } ~ F~ we will write 

s~,(~)= Z ~({x})s(~.,) 
X E / I  

This is a positive, strictly concave function on F~., the convex sum of two 
families being defined pointwise: (~5 + (1 - ~) ~)~ = ~r + (1 - ~) Cx. 
Now, S~. assumes its maximal value In(I~1) only for the family having as 
constant value on /1 the uniform probability measure co on ~ .  The mini- 
mal value 0 of S~. is assumed exactly on those families r for which for every 
x ~ A one has Cx = ~.~ for some s e 5"~ which may depend on x. 

We write f(fl, h) for the nonrandom limiting (negative) free-energy 
density. The solution of the variational problem of (2.4) poses a rather 
unmanageable problem in the general case. However, in the classical Ising 
spin case 5 e = { 1 , -  1 } a probability measure r on 6e is uniquely deter- 
mined by the expectation value (a),~, since ~ b ( { 1 } ) = l - r  
(1 + (a)~)/2 .  Thus, the entropy of r is a function of this expectation 

- r  1 } ) 1 n [ r 1 6 2 1 6 2  =r/(.1 +__~a)~,) S ( r  

It follows that the functional to be maximized in {2.4) depends only on 
the set { ( a ) , ~ :  x ~ A } of expectations, and one obtains a "gap" equation in 
terms of these expectations which is the multidimensional analogue of the 
equation a = tanh(fl(Ja + h)) for the Curie-Weiss model. For r E ~'(6e),  we 
write r for the flipped measure determined by ( a ) ~ = - ( a ) r  alter- 
natively, r + 1 }) = r -T- 1} ). Notice that S(r = S(r 
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Given a family cp _-{~b~} of probability measures on 5 ~  - {1, - 1 } ,  we 
denote by F(~)  (the 2 dependence is supressed; the fl and h dependence 
will be indicated by an index when needed) the functional (negative "free 
energy") to be maximized in (2.4): 

F(#) =2- '  Ilma(~)ll2+ <h, m~(#)) +fl-'Sa(#) 

Due to (2.3), F depends only on the values of �9 on the support of 2. We 
observe that Fa equipped with the metric d(~, ~') = max x ~ A [( a ) , x -  < a )~,x[ 
is a compact metric space (isomorphic to [ -  1, 1 ] I.~l via the identification 
of q6 ~ J / (5~ with ( a ),~ ~ [ - 1, 1 ] ). Moreover, F is continuous. 

Proposition 1. Let ~ =  {1, -1} .  

1. If �9 is a maximizing family for the variational problem (2.4), then 
](a)~x [ < 1 for all x~A;  moreover, 

(a)~x = tanh(fl(m;.(~) + h, x )  ) (2.5) 

for every x ~ A. 

2. If �9 maximizes (2.4), then (a),l,_ = - ( a ) g , ~  (i.e., ~b ~=~b~), for 
all x for which x e A, and - x E A. A family with this property will be called 
reflexive. 

A 

3. If h =0 ,  then �9 maximizes (2.4) iff ~ = {x ~ ~bx} maximizes (2.4). 

Proof. 1, Take such a "boundary" family �9 with ( a ) ~ , , =  _1 for 
some xo~A, and define ~ by changing only the value at xo; i.e., 
( a ) ~ ,  = +a  for an a e ( - 1 ,  1) to be specified. We can compute the change 
in F a'iad get 

l(a) ~erF(~)-F(q~)= 2({xo} ) g(/~, W+, a; p2({xo} )) 

w+ 
2 

where W+ = -4- (xo, h + mA4~)) -2 ({xo})p ,  and g is given by (1.3). Now 
the maximal value of g(fl, +_IV, .; p2({x,,} )) is certainly larger than its 
value at a = I for any fl > 0, so that there is an a with l(a)>/(1) = 0. 

Viewing F as a function of { (a)~x: x ~ A} and setting all first partial 
derivatives equal to 0 when 2({x})#0 ,  we obtain the gap equations (2.5) 
as the condition for critical point of F. By the previous result, we have that 
the maximal value of F is not assumed in a family taking the boundary 
values where the derivatives do not exist. 
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The symmetry property stated in part 2 is an immediate consequence 
of the gap equations, but we give a direct proof. 

A 

2. Define a new family ~ by ~x=0h(x)~bx+a,_(x)~ x, where 
e ~ ( x ) = 2 ( { x } ) ( 2 ( { x } ) + 2 ( { - x } ) ) - '  if x e A c ~ ( - A ) = A o ;  e t ( x ) = l  
otherwise; and 0~2(x) = 1 - a~(x). Using 0 h ( - x )  = 0%(x), for x e Ao, and the 
definition of m;.(-), the change of variables x ~ - x  gives m a ( $ ) =  m;,(~). 
Strict concavity of the entropy and the same direct calculation gives 
Sx(~) >i S~(q~) with strict inequality iff for some x,, e A,, one has (a),~ .... 4: 
- ( a ) , , , .  "Thus, F(~)>~ F(~),  with strict inequality if q~ is not reflexive. 

3. m~(q3)=-m~(q~) and S;~(~)=S;.(qs), so that F ( ~ ) = F ( ~ )  if 
h=O. | 

In their seminal paper, "On the theory of disordered spin systems, ' ' ~  
Pastur and Figotin obtain 

f(fl, h) = max FPr(m) (2.6) 
n !  

where 

FPF(m) := ( -- 1/2) ][ml[ 2 

+f l -*  ~ 2 ( x ) l n [ 2 c o s h ( f l ( m + h , x ) ) ] ,  m e [ - 1 ,  1] p 

This is obtained under a spatial homogeneity condition and a strong mixing 
condition under translations for the random patterns which imply 
ergodicity. Their proof appeals to Bogoliubov's approximating Hamiltonian 
method and it is claimed that the ergodicity properties are sufficient to 
extend this method to the random case. The same functional is obtained in 
ref. 6 using large-deviation techniques, assuming the ~ '  are i.i.d, variables 
with symmetric distribution. The same assumption is made in refs. 5 and 7; 
presumably the large-deviation techniques of these papers extend to cover 
the case where only ergodicity is assumed (as claimed by a referee in the 
case of ref. 7). We obtain a proof of (2.6) using only the ergodicity condi- 
tion (2.2) by studying the relationship between F ~ and F. 

For m e [ - 1 ,  1] p, we define a family r  eF~ by 

(a),btmlx = tanh(f l(m + h, x)) ,  x e A  

A straightforward computation using the formula 

) t/ - - = ln(2 cosh(u)) - u tanh(u) 
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gives 

F(qS[m]) = FPV(m)+(1/2) l i ra-  mx(~[m])ll  2 (2.7) 

The first derivative of F PF is 

(VFPV)(m) = - m  + m~(q0[m]) 

Thus, m,  is a critical point of F Pv iff 

mo = m ~ ( ~ [ m o ] )  (2,8) 

Notice that if h = 0, then m = 0 is a critical point. 
Computing the derivative of F with respect to (a)r~x, one finds that 

~b ~ is a critical point of F iff [cf. (2.5)] 

(a)q,[mil,l,,,)]=(6),t,~ forevery x e A . * ~ O s ~  (2.9) 

The following result is immediate. 

P r o p o s i t i o n  2. The maps 

m~-* ~ [ m ] ,  ~ ~--, mz(#) 

restricted to the critical points of F Pv and of F, respectively, are each 
other's inverses, and define a bijective correspondence between critical 
points of F ev and critical points of F. One has 

FPV(m) = F (~ [m] ) ,  FeV(m~(~)) = F(q~) 

if m (resp. q~) is a critical point of F Pv (resp. F). In particular, the maxi- 
mizers of F Pv and F are in bijective correspondence and the maximal value 
of the functionals is equal. 

The following result collects a number of general properties of the 
limiting free energy density. 

P r o p o s i t i o n  3. Let 6 e = { l , - 1 }  

1. 0 <'fl ~---~f(fl, h) is strictly convex and strictly decreasing. 0 <f l  
flf(fl, 0) is nondecreasing. Moreover, f(fl, 0) ) f f " ( f l ,  0; 1 ). 

2. h F--~f(fl, h) is convex and invariant under inversion. If 7r is a 
permutation together with arbitrary changes of sign of the components 
of vectors in NP, and 2({rc(x)})=A({x}) holds for every x e A ,  then 
f(f l ,  ~z(h))=f(fl, h). 
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. 

where 

For all f l > 0  and hcl~ p one has 

fl-J ln(2)~< max Fw(fl, <J(~) ,h>;  IIJ(/~)ll 2) 
.u e { 1.2.. . . ,p} 

~<f(fl, h) 

~< ~ 2({x})few(/7, <x, h);  2P2({x})) 
XE 11 

(2.10) 

J"(ix) d~U ~ x"(X({x}) +2({ --x})), v = l , 2  ..... p 
{ x ~ : ' / ' :  :,4,= I } 

4. Suppose fl ~<p- ~. There exists a unique family q~"e F a maximizing 
(2.4). When h = 0, q~" is the constant family taking the value 09 on A; and 
one has m;.(4 ~~ = 0  and f(fl, 0 ) = f l  I In(2). Moreover, i f f l < p  -I,  then: 

(a) h ~--~f(fl, h) is differentiable with 

m(/7, h) d~=r lim m^,(fl, h, {~})=(Vhf)( f l ,  h)=mx(q ~ ,̀) 

the limit existing (almost surely) under condition (2.2) (almost surely). 

(b) fl ~--+f(fl, h) is differentiable, and if (2.2) holds (almost surely) the 
limiting entropy density exists (almost surely) and equals S;.(@~ 
--fl2( Ofl@ )(fl, h). 

5. Iff l ,  <f12 a n d f ( f l 2 , 0 ) = f l ~ _ '  In(2), t h e n f ( f l , , O ) = f l ~ - '  In(2). The 
set {f l>0:  f ( f l ,  O ) = f l  -~ ln(2)} is not empty and equal to the interval 
(0, fl ,. ], where p - ~ ~ fl ,. ~ 1. 

R e m a r k .  The bound p-~ on the critical value of fl is attained in 
special cases: for p = 2 when :t is supported by two points (see Section 4), 
and for general p when Prob{~7 = 1} is either 0 or 1 (see Section 5). 

The bounds of (2.10) suffice to compute f when h = 0  and 
fl2r2({x})~< 1, for all x eA.  It is known that few(f l ,  0; J ) = f l - ~  ln(2) for 
flJ<<. 1; thus under the condition on fl and 2, the upper bound of (2.10) 
gives f ( f l ,  O ) = f l  - I  In(2). This happens, for example, when 2 is equi- 
distributed on A and f l ~ 2  -p IAI (41 ) .  

The lower bound 

max fcw(fl, <J(/x), h>; IIJ(/x)ll 2) 
II i~ { 1.2,.-. p} 

is exact if h has only one nonzero component and 2 is uniform, leading to 
the value fcw(fl, Ilhll; 1) f o r y  



On the Free Energy of the Hopfield Model 343 

The following notation will be used throughout. For p = 1, 2 ..... p we 
define the subsets ~ ,  c ~ by 

~ , =  { x e X : x " =  1} 

For a subset d of X we write - d  for the subset obtained by changing 
the sign of all the members of ~ .  We have ~ , c ~ ( - ~ , ) = ~  and 
~ 4 , , u ( - ~ ) = ~ .  

Proof.  1. To prove the strict convexity and the strict decrease of 
f ( . ,  h), we use the fact that for any family �9 maximizing (2.4) one has 
Sx (~ )>0 .  This follows [see the statements about Sx(~) made after the 
Theorem] from Proposition 1. 

Now suppose 0 </ / ,  <//2 and ~/~2 is a maximizing family for F/~ 2. 
Then, 

f(//z, h)=F/,,_(~/j2)= F/~,(~/, 2) - / / ~ ' / / ~ - _ ' ( / / z - / / , )  S~(~/~2) 

< r / , , ( ~ / , : )  < . . f ( / / , ,  h )  

If//o 4=//, and 0 < ~ < 1, let//~ = ~//i + (1  - ~ ) / / 0 ,  and consider a maxi- 
mizing family q~/~o for F/to. Then we have 

f(//~, h) ~< ~f(//,. h) + (1 - ~) ft / /o,  h) 

- ~ (1  - ~ ) ( / /  , - / /0)  2 ( ~  , / /o / /~)  - ' S ~( ~ /,.) 

Suppose//~ <//z,  and let �9 be a maximizing family for F/~,. Then 

_ ~ ' ( / / ~  / / ,  f ( / /2 ,  O) >~ / /2rm( ~ )  = _ _ - - / / , )  IIm:.(r O) 

Finally, notice that for h - - 0  the Hamiltonian (1.1) is bounded above 
by the Hamiltonian H I~} which is equivalent to the Hamiltonian (1.2) N , p = l '  
of the Curie-Weiss model at zero field and unit interaction by the change 
of variables S;~--~ {~S;. Thus, f(//,  0)~> fcw(//, 0; 1) and, since 1 is the critical 
temperature of this Curie-Weiss model, we deduce//~ ~< 1. 

2. The convexity off( / / ,  �9 ) is obvious from (2.4). Suppose ~ is a per- 
mutation together with arbitrary changes of sign of the components of vec- 
tors in R r. For a family q~ let ~ be defined by ~ = ~,~.~. Notice that 
maps Y~ bijectively onto itself. Then if x and ~(x) have the same (nonzero) 
measure for all x e A ,  we get mx(&)=g-I(mx(q~)) .  Since S(~)=S(~b), the 
same assumption on the measure gives Sx(&)=Sx(~) ;  thus F(&, h ) =  
r ( ~ ,  ~(h)). 

3. The upper bound follows from (2.4) by using the Lemma of the 
Appendix in the case ~ - - Y "  to estimate ]]mx(q~)]l 2 for any family ~. 



344 Guerberoff and Raggio 

Our best lower bound on f is obtained by computing F for any family 
q~ which is reflexive and constant on o~,, where it takes the value ~b. One 
obtains m~( r  <a)~, J"(,u) and F(q~)=g(fl, <J(p), h) ,  <~7),/,; }lJ(p)l]2). 

4. This proceeds by applying the contraction principle. Define a map 
T on F;. by (a)r~a,~ = tanh(f l (m; . ( r  h, x)) ,  recalling that a probability 
measure on ~ is uniquely determined by the expectation of a. Now, T 
maps /'~ into itself because the range of tanh is ( - 1 ,  1 ). Writing the tanh 
as the integral of cosh-2 and using cosh(. ) ~> 1, we obtain 

](a)7~q,~ --(a)T4,eJ<~flpd(r ~) forall x e A  

Thus 

d(T(~), T(~)) <~flp d(~, ~) (2.11) 

with equality iff q~ = ~. Thus (ref. 20, Problem 1, p. 267) the gap equations 
have a unique solution ~" when tip ~< 1. One also concludes that 

cb"= lim T"(q~) (2.12) 
I t 4  -I_ 

for every ~ E F~. 
By Proposition 1, the unique solution of (2.5) existing for tip ~< 1 gives 

a maximum ofF.  Thus, (2.4) has a unique maximizing family ~" for tip <~ 1. 
An alternative direct proof of this statement proceeds by showing that 
F,~q~--,F(q~) is strictly concave. The Hessian of F is B--f l - tD with 
Bx.:. = 2(x)2(yj (x ,  y ) ,  and 

D x ,.= 6x ~.2(x)(1 -- < a> ~,,) - '  ~> 6 x ,.2(x) d~ D- 

It follows that the quadratic form associated with the Hessian is bounded 
above by the quadratic form associated to B- f l - 'D" ,  which is independ- 
ent of q~. Moreover, for fl sufficiently small, the matrix D"- f iB  is positive 
definite. 

If g2~F~ denotes the constant family on A with value o5, then 
ma(O) = 0, so that ~2 is indeed the only maximizer for h = 0. The formula 
for f(fl, 0) follows by evaluating F(O) using S(~o)=ln(2). 

To prove differentiability off(fl ,  �9 ), we will have to work with different 
h's and thus use an index h to distinguish the various quantities. The same 
estimate as before leads to 

d(T,,(~), Tk(~)) ~ Pp IIh - kll ~ (2.13) 

where Ilhll-,~ = max/, Ih% and the inequality is strict as soon as h :~k. 
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By the triangle inequality, (2.11), and (2.13), we have 

d(Th(~), Tk(~))<~/3P IIh-kll~_ +/3p d(~, ~) (2.14) 

We write ~"(h) for the unique maximizer corresponding to the field vector 
h. For any integer n and family q5 we have by the triangle inequality and 
(2.14) 

d(#~ 4b<'(k)) ~< d(q$"(h), T'n:(q~)) + d(T~(c/i), qs<'(k)) 

+/3p(1-/3"p") [Ih- kll~ 
1-tip 

Upon taking the limit n ~ oo using (2.12), we conclude that 

d(qS"(h), q$"(k)) < 1 _fl~Pflp IIh - kll ~ (2.15) 

A direct estimate on (2.3) using (2.15) now produces 

Ilm~(c/'<'(h))-m~,('/~"(k))ll < /3p3/2 Ilh-kll  (2.16) 
�9 1--tip '" 

We can now prove differentiability off(/3, .) as follows. Let e be an 
arbitrary unit vector in 1~/'. By virtue of convexity o f f ( / / , . ) ,  the left and 
right derivatives (J~.)_+ in direction e exist and satisfy 

17 I[f(/3, h)--f(/3, h - e e ) ]  

<<.(f~) <,.(f~)+ <...e-l[f(/3, h+ee)-f( f l ,  h)] (2.17) 

for all e > 0. Since ~"(k) is the (unique) maximizer of Fk, we can estimate 
the r.h.s, of this inequality 

e - i  [f(/3, h + ee) --f(/3, h)]  

= e -I [Fi, +,:~(#<'(h + ee)) - Fl,(q~"(h))] 

~< e - t[Fi, +,:~(#"(h + ee)) - Fh(qS"(h + ee))] 

-- e - i [  ( h  + ee, m~(#<'(h + ee))) - (h, mx(~<'(h + ee))) ] 

= (e ,  m~(#"(h + ee) ) )  

Proceeding analogously with the l.h.s, of (2.17), we get 

e - I [ f ( f l ,  h ) - f ( /3 ,  h - e e ) ]  i> (e, m~.(#"(h - ee))) 
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Thus, 

(e, m,~(q~"(h-ee))> <~ (f~)_ <~ (f~)+ <<. <e, m~(q~"(h + ee))> 

and ( fo)_=(f~)+=<e,  ma(~"(h))> follows upon taking the limit e~0 
using (2.16). 

The claim about the limit of the overlap parameter vector follows by 
the fact that the limit of derivatives of a sequence of differentiable convex 
functions exists and is equal to the derivative of the limiting function when 
this function exists and is differentiable. 

The proof of differentiability o f f ( . ,  h) is analogous. 

5. Since f(fl, h)>~fl -~ In(2) by part 3 of the proposition, the first 
claim follows from the nondecreasing property of fl~-+flf(fl, O) (part 1 of 
the proposition). The rest of the claims follow from parts 1 and 4. I 

3. THE CASE OF U N I F O R M  A 

The limiting measure 2 is uniform, i.e., 2 ( { x } ) =  2 -v, when, for exam- 
ple, the ~ are i.i.d, with symmetric distribution. The following result shows 
that the upper bound of (2.10) is attained when 2 is uniform, and at most 
two components of h are nonzero. 

Let ~cw(fl, h) be the unique probability measure on ~ such that 
<~>:w,.h~ = mCW(/L h; I). 

Proposition 4. Let 5P={1, -1} and suppose 2 is uniform and h 
has at most two nonzero components, say h"' and hm; then 

f(/L h) , r c w t ~  h " '  i o w  ~ j  ,~ , ,  +h"2; 1 (3.1) = ) + s f  (fl, h" ' -hm;1)  

In particular, f(fl, 0) =fcw(fl, 0; 1). Now, 0 <fl~-*f(fl, h) is differentiable. If 
and ~ are maximizers of (2.4), then 

&(~) = & ( ~  = - p -  ~ tp, h) 

If (2.2) holds true (almost surely) the limiting entropy density exists 
(almost surely) and is equal to -fl2(Of/Ofl)(fl, h). 

Moreover: 

1. I f f l >  1 (resp. fl~< 1), then for Ih"'l # Ih"-I (resp. arbitrary h"' and 
h":), one has: 
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(a) There is a unique family ~~ maximizing (2.4) given by 
~=q~r elh"+e2h~'  q for x e ( e , ~ , ) c ~ ( e _ ~ , _ ) ,  e j e { _ } .  One has 
m~(~  ~ = 0  for x distinct from/1~ and/ t  2, and 

m~l(tJ 5~ = ( 1/2 )(mr h"' + hm; 1 ) + mr h ~'' -- hm; 1 )) 

m~2( ~ ~ = ( 1/2 )(mCW(fl, h"  + hm; 1 ) + mr h m - h"'; 1 )) 

(b) (h ~'', h ~'-') ~---~f(fl, h) is differentiable and 

mUJ(fl, h) dr N--~.lim rn~(/~, h; { ~ ) ) =  0 ~  (fl' h)=m~(r176 

the limits existing (almost surely) under condition (2.2) (almost surely) for 
j =  1, 2. 

2. I f f l >  1, then: 

(a) ( h " , h m ) ~ f ( f l ,  h) is not differentiable on the two lines 
I h " l  = Ih'21. 

(b) For Ih"l = Ih':l S 0  (resp. for h ~' =hU-'=0) there are 2 2'p--'~ (resp. 
2 2'p-') families r maximizing (2.4). For each of these one has rn~(r 

D,//J ~ for /~ l#X~/~2 and the vector ( ~ (r takes two (resp. four) 
values. 

The families of part 2(b) and the values of m~ can be given explicitly 
in terms of ~r and mcw. For uniform 2 and at most two nonzero field com- 
ponents Proposition 4 provides a rather complete picture. For subcritical 
temperatures (i.e., fl > 1) the subgradients o f f  on the two lines [h"] = ]h ~'-'] 
can be described explicitly to obtain the phase diagram of Fig. 1. There is 
a jump discontinuity in t he /~ th  and g2th limiting overlap parameters on 
each line as indicated in the figure. The (h ~', h "2) plane splits into the four 
open cones delimited by the two lines; in each cone the limiting behavior 
of the overlap parameters as h = (h ~'', h ~:) ~ (0, 0) for fl > 1 is different: 

lim (m"(fl ,  h), m -(fl, 
h ~ O: 0 < Ihl~2l < ldq  

lim (m"(p ,  h), m~':(fl, 
h ~ O; 0 < Ihml  < hi'2 

lim (rn"(fl, h), m -(fl, 
h ~ 0; 0 < IhJ'21 < --h Iq 

lim ( m~"(fl, h), rnm(fl, 
h ~ O ; 0 <  l /dql  < - -h  ~2 

h)) = (mCW(fl, 0+; 1), 0) 

h)) =(0, mcw(/~, 0§ 1)) 

h)) = (mCW(fl, 0-;  1), 0) 

h)) =(0,  mCW(fl, 0-;  1)) 

822/87/I-2-24 
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h v 

h v =  - h I~ 

l""- 

m "= (m~'(IL2h")+ m ~'(1~,0"))/2 [ 
I m (rn~"(13 2 h ~  

h v = h l  ~ 

~,2h.)+m-,(~,o.))/2 l 
~ ~  h~ 

I I 
v =  J ~ .  P ~ ) m~'(~ 2h~'))/2 I 

Fig. 1. Phase  d i ag ram for /3  > 1 in the i.i.d, case with symmet r i c  d is t r ibu t ion  and two non-  

zero componen t s  h", Is" of h. 

In simple words, as h--* 0, m follows the behavior dictated by the field 
component with maximal modulus. 

The simple picture that emerges for uniform 2 and two nonzero com- 
ponents is due to the fact that f is given by the upper bound of (2.10) 
where all ( a ) ~  are decoupled. This is quantitatively wrong for three or 
more nonzero field components. If )~ is uniform, p = 3, and all three com- 
ponents of h are nonzero; then for all fl > 0 

f(/L h ) < 2 - "  ~ f~w(/y, ( x , h ) ;  1) (3.2) 
X ~ J "  

except for some particular nonzero values of the components. 

Proof. Suppose p ~> 2, that 2 is uniform, and that h has at most two 
nonzero components. Due to the permutational symmetry, we may assume 
that h j and h 2 are the only components which can be nonzero. Since 
A--  - A  = Y', we may (due to Proposition 1) obtain the maximal value of 
F by varying over reflexive families. Such a family �9 is specified uniquely 

A 

by its values on ~d~, since ~.~ = ~_ x for x E -._~,'~. We partition ~'t into two 
sets ~ l = ~ l C ~ d 2  and ~ 2 = d l c ~ ( - - d 2 )  of equal measure 2 c:-2~. The 
proof proceeds in four steps. We drop the index 2 in m:. 
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First step. If the family �9 is reflexive and has the additional property 
of being constant on each of the two sets ~,  and ~2, then, letting ~j be the 
constant value of ~b~ on .~j ( j  = 1, 2), we have 

mt(~)  = �89 + (a)&,) 

1 m-(~) = ~_( (a )&-  ( a ) & )  

m~(~) = 0  for all p ~ l , 2  

(3.3) 

(3.4) 

(3.5) 

To prove this, partition ~'~ into four disjoint subsets ~ c~ ~ , ,  ~ c~ ( - ~ , ) ,  
~2m~,, and .~2 ~ (- . .~,) .  

Second step. For a given reflexive family �9 we construct a new family 
which is reflexive and constant on ~s ( J =  1, 2). This involves two prob- 

ability measures pj on "~i ( J =  1,2). We obtain a lower bound on 
F(~)--F(~) and then choose these measures in order to maximize this 
lower bound. Define ~ by putting 

~x = Z pj({y})~by=:~,j if x ~ j  
y a ~ j  

for x ~ ~4~ and extending reflexively, i.e., ~ = ~ _ ~ for x ~ (-,.~r that is, 

~ = ~,j for x E - . ~ .  The family ~ is reflexive and constant on each of the 
subsets ~ ,  ~2, - - ~ ,  and - ~ 2 .  By the first step, m(~)  is given by Eqs. 
(3.3)-(3.5). The entropy part of F for �9 is 

y E A'I I y . - 

It follows that 

F(~)=�89 +h2, (a)~,)+�89 (a)~2) (3.6) 

where for real h and f l>0 ,  g(fl, h,.)=g(fl, h, .; 1) is the function on 
[ - 1 ,  1] defined by (1.3) for J =  1. 

We now.compute F(~). Using reflexivity and S(~)= S(~b), we find for 
the entropy part 2 -~/,- ,I(Z x ~ ~ S(~x) + ~x ~_, S(~x)). 

Now, by reflexivity, m~'(~) = 2-~P- ~) ~x~.~,, x"(a)~x,  so, using the 
partition .~  = .~ w .~2, we get 

D l I ( 2 ) ( ~ ) ) ~ 2 - ( P - I )  ( E ( O ' ) 4 ~ x - ~ - ( - - ) E  ( O ' ) 4 J x )  
x ~ .~1 x ~ ;~'2 
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Thus, using the Lemma of the Appendix (with ag = ar to estimate the 
sum of quadratic terms in F, we get 

F{@)~<�89 ~ 2-'"-2~g(fl,  h~ +h  2, (~r}~x) 
x ~ : ~ t  

+�89 2 2-( '-='g(f l ,  h ' - h 2 ,  ( r  
x ~ ~ 2  

Our bound is then 

F( g , ) -  F ( ~ )  >i �89 g(,O, h' + h 2, < ,7) e, , ) - 

'E h, +~_ g(fl, - -h a, (a)r 

2 -(p-'-) Y. g(fl, h l + h  : , ( a ) ~ ) ]  

- - 2  - I p - = )  Y ,  g(fl, h ' - h  2, (~),1,~) 1 
X E : ~  2 

(3.7) 

We now choose the measures pj in order to make the r.h.s, of this 
inequality as large as possible. By definition, the value (a}~,j lies in the 
interval 

[min{~j ( a } ~}, ma~{. (cr) ~} ] 

Let tj be a number in this interval that maximizes g(fl, h ~ + h 2, �9 ) for j = 1 
and g(fl, h ' - h  2, .) for j = 2 .  Choose & such that (tr)~,j=tj.  Then the 
averages over ~i in the r.h.s, of (3.7) are not greater than g(fl, h ~ + h 2, t~) = 
g( fl, h ' + h 2, (tr} ~,) and g( fl, h ~ - h 2, t2)=g(fl,  h I - h 2, ( tr } r ), respectively. 
For this choice of measures, the r.h.s, of (3.7) is nonnegative and as large 
as possible. 

Third step. By the first and second steps, we conclude that if 2 is 
uniform and only the components h ~'~ and h m of h can be nonzero, then the 
maximum of F over F~ is equal to the maximum of F over the reflexive 
families which are constant on ~l  =~r n ~r and on ~2 = ~r c~(-~r 
Thus, denoting by ~kj the values on ~. ,  using (3.6) and ~ c~ ~ 2 - - ~ ,  we get 

f(fl, h) = max {�89 hU' +h  u2, (cr)~,,)+�89 h ~ " - h  u2, ( t r )  ~,2)} 

l h . , _ = ~  max g(fl, +h"2 , (a )q , )+~  max g(fl, h~"-hU'-,(tr)~,) 

but the respective maxima are equal to fcw(fl, h u, + hU,.; 1 ). 
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It is known that the value of t in [ -  1, 1 ] maximizing g(fl, h , .  ) is 
unique if h:/:0 or if f l ~  1, we denote it by t(fl, h). It thus follows that a 
maximizing reflexive family which is constant on N, and on ~2 is unique 
if [ha'[ # [ha'-[ or iffl~< 1; denote this family by �9 ~ Now suppose that q) is 
a maximizing family; by Proposition 1, q) must be reflexive. Consider the 
uniformization ~ on @. of q) constructed in the second step. We have 

F(O) ~ F(~)>~ F(O) 

+ �89 [g(K ha, +h% <~> 

Y] g(fl, ha' + h a', (a)~x)  ] ~ 2 ~ { p  ~ 2 )  

x e .MI 
J 

+ �89 [g(/L h a' - h.'-, <~>,:) 

g(fl, ha' -- h a:, <a>, , ) ]  ~ 2 ~ ~ p ~ 2 ~ 

x ~ d# 2 A 

where both corrections in [ - ]  on the r.h.s, are nonnegative. It thus follows 
that F (q) )=  F($) ,  that ~ = r and that the corrections are zero. From the 
latter fact, we conclude (the argument is made explicit below) that �9 is 
constant on ~j ( j  = 1, 2), and thus r = O ~ 

It is known that there are two values of t in [ -  1, 1 ] maximizing 
g(fl, h, �9 ) when fl > 1 and h = 0; we denote them by t(fl, 0 +-). Suppose that 
h a' = h a'- :/: 0, and let q) be a maximizing family which must be reflexive. The 
above inequality now implies that the correction term is zero, i.e., 

g(fl, 2h a', <a )q , , ) - 2  - ' p - 2 '  y '  g(fl, 2h a', <a>~,)=O 
X E "~'1 

g(fl, O , < a ) , 2 ) _  2 ,p-2) ~ g(fl, O,<a>r 
x E ~'2 

and that <a>e, , = t(fl, 2h"') and <a> ~,: = t(fl, 0• From the first identity we 
conclude that <a>r is constant on ~ ,  and equal to t(fl, 2ha'); this then 
determines uniquely the value of �9 (and $ )  on 9~ I . From the second iden- 
tity we conclude that on 9~2, <a>r takes any of the two values t(fl, 0• 
Since there are 2 p-2 elements in 9~ 2, there are 2 2~r--'~ possibilities. Going 
through the other cases h " ' =  - h  a2 # 0  and h a' =ha2=0 ,  one obtains the 
claims of part 2 of the proposition. 
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Fourth step. The rest of the claims of Proposition 4 follow from: (1) 
the (familiar) solution of the variational problem max{g(fl, h,t): 
t ~ [ - 1, 1 ] }; (2) the known differentiability properties of h ~__~fcw(fl, h; J) 
and of fl~--~ffw(fl, h;J); (3) Eq.(2.1) and the fact that the limit of 
derivatives of a sequence of differentiable convex functions exists and is 
equal to the derivative of the limiting function when this function exists 
and is differentiable; and (4) Eqs. (3.3) and (3.4). II 

We now give a proof of (3.2). We assume ,t is uniform and p = 3. By 
Proposition 1, it suffices to consider reflexive families. A reflexive family 
is specified by the values it takes on the four one-point sets ~ = ~ n 
a~2N,-~r ,~2=~Cd'lN~/2A(--~r ,.~3=~(~r162 , and ~4=~r  
( -~ '2 )  c~ (-~ '3) .  To shorten the notation, write ( j ) =  (a)~ , ,  where ~bj is 
the value of �9 on ~j. We compute 

m ' (~ )  = �88 + ( 2 )  + ( 3 )  + ( 4 ) )  

m2(~) =- �88 1 ) + ( 2 )  -- ( 3 )  - ( 4 ) )  

m3(~)= ~(( 1 ) -  (2)  + ( 3 ) -  (4) )  

to obtain 

F(cb)= �88 h' +h2+h 3, ( I))+�88 h I - [ -h2-h  3, (2) )  

+�88 h'-h2 + h 3, ( 3) ) + �88 h ' -h2-h  3, (4)) 

}2 ( (1 ) -  (2) - (3) + (4))2 

Writing K ( ~ )  = ~ ( (  I ) --  ( 2 )  --  ( 3 )  + ( 4 ) ) - ' ,  we then have 

f(fl, h)= max F(~)  
q~ reflexive 

<~�88 h' +h2+h3; 1~+ • h' +h2-h3 ;  1) 

+ �88 h ' - h 2 + h 3 ;  1) + 1 fcwfR h' ~ j  ,~,, - -h  2 - h 3 ;  l) 

= 2  -3 ~ f~"(fl, (h, x ) ;  1) 
x ~ : ' F  

due to K((/,)>/0 and the fact that few(fl, .; 1) is even. There is equality iff 
for a maximizing family r one has K(q ) ' )=0  and ( i )  is equal to the 
corresponding Curie-Weiss magnetization. In terms of the Curie-Weiss 
magnetizations, K(cb ~ = 0 iff 

m~W(fl, h I + h 2 + h  3)-mCw(fl, h i + h Z - h  3) 

--mCW(fl, h ' - - h Z + h  3) + m~"(fl, h t - h 2 - h  3) = 0  
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This is certainly satisfied if one or more of the components of h is zero; it 
is also satisfied for certain particular nonzero values of the three com- 
ponents. But in general the expression is not zero. 

4. THE CASE OF TWO PATTERNS 

If p = 2 ,  then Y ' = { ( + ,  + ) , ( + , - ) , ( - ,  + ) , ( - , - ) }  in obvious 
notation. A complete detailed description can be given because the 2 p = 4 
equations (2.5) decouple. The limiting negative free-energy density can be 
described in terms of the limiting negative free-energy density at reciprocal 
temperature fl of a Curie-Weiss model (1.2). We use the notation intro- 
duced in the Introduction, and we write accordingly ~bcw(fl, h; J) for the 
unique probability measure on 6 a whose spin expectation is m~W(fl, h; J). 

The dependence on the measure 2 enters only through the parameters 

a=~({(+, +)})+~({(-,-)}); b=;t({(+,-)})+a({(-, +)}) 

After a lengthy but straightforward discussion of the solutions of (2.5) 
using the knowledge about the Curie-Weiss model, we obtain the following 
results: 

f(fl, h) = afC"(fl, h'  + hZ; 2a) + bfC"(fl, h' - h2; 2b) 

This is differentiable in the whole (h ~, h 2) plane except for the two lines 
Ih I] = ]h 2] when 2 f l a > l  (for the line h 2 = - h  I) or 2 f l b > l  (for the line 
h2=hl) .  4 One has (Vhf)(fl,  h)=m(f l ,  h) with 

m~(fl, h)=am~W(fl, h ~ +h2; 2a) + bmC"(fl, h' - h 2 ;  2b) 

m2(fl, h)=amCW(fl, h I +h2; 2a) -bmCW(fl, h I - h  "-; 2b) 

The families maximizing (2.4) can be described completely in all cases, 
but we give only a rough description. 

When h = 0  and fl~<min{(2a) -~, (2b) -~} the maximizing family is 
unique and ~b~ is the uniform probability measure. 

When h = 0 and fl > max{ (2a)- l ,  (2b) -t} there are four maximizing 
families corresponding to alternatives ~bl++l=~bcw(fl, 0+;2a),  ~bl__~= 
~Uw(fl, 0-v-; 2a), ~bl+_ I = ~Uw(fl, 0+; 2b), and ~b~_ +, = ~bcw(fl, 0 r ;  2b). 

4 N o t i c e  t h a t  the  c r i t i ca l  v a l u e s  fl = 1 2 a } - t  a n d  fl = ( 2 b ) -  1 a r e  in the  i n t e r v a l  [1/2,  co ). T h e  

b o u n d  fl = p - ~  o f  P r o p o s i t i o q  3 is a t t a i n e d  for t he  d e g e n e r a t e  cases  a = 1 o r  b = 1. 
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When Ihll = [h21 and 

min{(2a) -~, (2b ) - ' }  <f l  ~< max{(2a ) - ' ,  (2b ) - ' }  

there are just two maximizing families. 
It is remarkable that for h = 0  the two components of ma(~) for a 

maximizing family r are equal for a > b and the negative of  each other for 
a<b. 

When [hll ~ [h2l or if f l~<min{(2a)- ' ,  (2b) -~ } the maximizing family 
is unique. 

We now consider the particular case where the (~ are i.i.d. One then 
has an asymmetry parameter e e [ - I/2, 1/2], such that 

Prob{ f = + ] }  = � 8 9  (4.1) 

In this case the characteristic parameters a and b determining the measure 
2 are given by a = �89 + 2e 2 and b = �89  2e 2. At zero field h = 0 and for e ~ 0 
one has two distinct critical temperatures 

T,. = ( t ic)- '  = 1 +4e  2, T .  = ( , g . ) - '  = 1 --4e 2 

and three distinct regimes: 

1. The homogeneous zero-overlap regime: For T>~T,, one has 
f(fl, 0 ) = f l  -~ In(2) and there is a unique maximizing family. The 
associated overlap parameter is m = 0. 

2. The homogeneous nonzero-overlap regime: For T.  ~ T< T, one 
has f(fl, O)= afCW(fl, 0; 2 a ) +  b#-~ ln(2); there are two maximizing 
families ~ and ~2. The two associated overlap vectors m (~) and 
m (2) a r e  the negative of each other ( - m ( ~ ) =  m ~2)) and have equal 
nonzero components [ (m~J)) 1 = (re(J))2]. 

3. The inhomogeneous overlap regime: For T <  T .  there are four 
maximizing families and associated to them four distinct overlap 
vectors. Each of these vectors has the property that its two com- 
ponents are unequal. 

Thus, T,. is the transition temperature for the regime of zero overlap to 
nonzero overlap, and T , (<T , , )  is the transition temperature from the 
regime of homogeneous overlap (i.e., the two components of the overlap 
vectors are equal) to the nonhomogeneous overlap (i.e., the two com- 
ponents of the overlap vectors are distinct). The "phase diagram" is given 
in Fig. 2. 
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Fig. 2. 

F-- 

0 

O.0 

homogeneous zero 

homogeneous non-zero 

0.5 

E 

Phase diagram for p = 2 in the general i.i.d, case: Prob{ ~J,'= +1 } = �89 + e. 

5. THE GENERAL I.I .D. CASE 

In the previous section dealing with p = 2 patterns and the general i.i.d. 
case we identified two critical temperatures 7",. > T ,  which separate three 
different regimes. In this last section we collect the scanty information that 
we presently have for arbitrary finite p. Tamarit and Curado ~a~ describe 
results obtained (via the methods of Amit et al.) assuming pair-correlated 
patterns; here also three distinct regimes appear. A numerical study of the 
critical points of the functional F ev has been performed in ref. 22; they dis- 
tinguish a number of metastable "phases" below Tc arising from local 
maxima of F PF. 

We suppose that the ~ are i.i.d, with distribution (4.1) and we con- 
sider the case h = 0 omitting it from the notation. Since the Hamiltonian 
(1.1) is invafiant under a change of sign of each ~'/, we conclude that f ( f l )  
is an even function of e. In view of part 5 of Proposition 3, we have 

fl~ = sup{fl > O: f ( f l )  = f l - '  ln(2)} 

Alternatively, fl,. is the supremum over the set of positive fl such that Fp 
admits a unique maximizer q~o (which is then the uniform family assigning 
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(c r )  = 0  at each x e S f ) .  The  following lower bound  is exact for every e 
when p = 2 and for every p when e = 0, __+ �89 

P r o p o s i t i o n  5. fl,7 t = T,. >>, 1 + 4eZ( p - 1). 

Proof. Notice  that  for e = 0 we already have proved  T, = 1. So we 
assume that  e :~ 0. 

Fo r  x ~ W ,  let r ( x ) =  i r _~(~, = ~ x t' + p ) ,  which is just  the n u m b e r  of  + 1 
in x, so that  r ( x ) e  {0, 1 ..... p}. For  r = 0 ,  1 ..... p consider  the subsets .~,. of  
X of  those x with r (x)  = r :  

p = l  

Then I.~,.I =(~) and 2 ( x ) = ( � 8 9 1 8 9  p-'lX~. Let 

y(r) = (�89 + e) r ( � 8 9  e ) ' - '  ( p )  

denote  the b inomial  distr ibution associated to the distr ibution of  the ~//. 
Suppose that  the family q ~ F ; .  is uniform on each f . ,  i.e., (a),+, x is 

constant  on Y;,. for every r; then letting s be the vector  in R r+  ~ with com-  
ponents  s,. = ( a )  ,I,x, x E .~,., we obtain  

P 

Z Z x,, 
r = I)  x E / 1 ~ -  

Since all x e~r r arise f rom any one vector  in .21. by permut ing  the com-  
ponents,  the sum Y',.~ ~,,c~ x~' is independent  of  p, The  evaluat ion gives 

x " = 2 r - - P ( P r )  

The compu ta t ion  of  S;,(O) is direct and we obtain  

_ 1 [ ~ ,  2 
F ( ~ ) - ~ p  L,.~=oY(r)(2,'-p) s,. ] + f l - '  

It follows that  

f ( f l )  > /max  F(~b)= max  F ( s ) - - f ( f l )  
r s 
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where the first maximum is over the families which are uniform on each X,. 
and the second maximum is over (p + 1)-dimensional vectors with com- 
ponents in the interval [ -  1, 1 ]. 

We will solve the variational problem for P and show that 

{fl > 0: jT(f l )=f l - '  In(2)} =(0 ,  fl,.] 

with ~ = ( 1 + 4e2(p - 1 )) - ' .  The inequality f(fl) ~> j~(fl)/> F(0) = f l-I  ln(2) 
then implies that fl,. <~ fl,, which is the claim. 

The critical points of .F are the solutions of 

)~ 2 r - p  ~ . . 2 t - P s , } ,  
tanh ~p x/P s , - -  

Introduce the function G: R --+ ~: 

r = 0 ,  1 ..... p (5.1) 

1 m, 1 p I2 cosh 

The condition dG(m)/dm = 0 is 

m = ? ( r ) ( 2 r - p )  tanh 
r = O  

(5.2) 

For m e E ,  let s(m) be the vector in •P+J with components s(m),.= 
tanh(flm(2r-p)/p). For sE[~ p+l, let ifi(s)=Y'.P=o),(r)(2r-p)s,.. The 
analogue of (2.7) is 

Moreover, (5.1) and (5.2) are, respectively, equivalent to s=s(tfi(s))  and 
m=n3(s(m)). Thus we have the analogue of Proposition2: the maps 
m w-~ s(m) and s w-r ih(s) are each other's inverses when restricted to critical 
points of G, respectively, F; and /~(s)= G0h(s)) at critical points. In par- 
ticular, the maximizers of r and of G are in bijective correspondence and 

max/~(s) = max G(m) 
s I H  

Let us now look at solutions of(5.2); to this end we analyze the function 

h (m) :=  ~ ),(r)(2r-p)tanh(flm2r-p~ 
,.=0 P / 
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given by the r.h.s, of (5.2). The result of this analysis is the following 
lemma, the proof of which is elementary. 

Lemma 1. h is strictly increasing with O<h'(m)~<h'(O), Vm�9 
Moreover, h is strictly concave (resp. strictly convex) for m > O  (resp. 
re<O). 

This result establishes that there are at most three solutions of the gap 
equation m=h(m) (say mo=O, ++_a,,), since a strictly convex or concave 
function can intersect a straight line at most in two points and in the 
present case m = 0 is a solution. 

Finally, let us compute the value of ~c, for which mo = 0 ceases to be 
a maximizer. The second derivative of G at m = 0 is 

P 

G " ( O ) = - p - '  +flp-2 ~ 7(r)(2r_p)2 
r = O  

so that tic is determined by the condition tic ZP=0 7(r)(2r-p) 2 =P. With 
the well-known first and second moments of the binomial distribution we 
compute that ~c has the claimed value, l 

To attempt to define the second critical reciprocal temperature, con- 
sider the set 

J f  = {fl > 0: m~(qs) is independent of/~ �9 { I, 2 ..... p} 

for each maximizer ~ ofF/j } 

of reciprocal temperatures, where every maximizing family �9 has 
homogeneous ma(~). The first problem is to show that this set is an inter- 
val. Our conjecture is that this is the case and that /~,  = sup of" is given by 

( f l , ) - ]  = T,  = max{ 1 -4e2(p-  1), O} 

This would imply that for given e ~ 0, there is a critical value ofp  given by 
Pc = [ 1 + (2e) -2] ,/2 (which is greater than 2); or alternatively, for a given 
value of p there is a critical value of e given by e c = [ 4 ( p -  1 ) ] -  ]/2 (which 
is smaller than 1/2 for p >~3) such that for p>~p~, or alternatively ]El >~e,. 
the homogeneous regime persists and the nonhomogeneous regime does 
not appear (i.e., T ,  = 0). The "phase diagram" for p/> 3 would then be that 
of Fig. 3. 

The conjectures are amply verified by numerical solution of the varia- 
tional problem. The subject is presently under investigation. 
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Conjectured phase diagram for p/> 3 in the general i.i.d, case. 

APPENDIX  

The following result is used in the proof of Proposition 4 in the par- 
ticular case ~r = ~r and in the proof of part 3 of Proposition 3 with d = 5f. 
In both cases the hypothesis is easily verified. 

Lemma. If ~r c 5f satisfies 

I ~  n ~ n ~ , l  + I~r n ( - ~ , )  n ( -~ , )1  

= I ~  n ~ n ( - ~ , ) 1  + I ~  n ( - ~ , ) n ~ , l  

for a l l / l ~ v ~ { 1 , 2  ..... p} ; then  

[ ]' �9 • , ~ ( { x } ) x ' ( o ) , x  ~<1.~1 2 [~ ( {x} )<~) ,~ ]  2 
p = l  x e . ~ /  x e.~a/ 

Proof. This is Bessel's inequality in R I~'1 applied to the vector with 
components 4( { x } ) ( a )  ~x (x e ~r and the p vectors { e" } with components 
(e')x = I~1-~/2 x" (x ~ r  whose orthonormality is a consequence of the 
hypothesis on ~ .  | 
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